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We consider the Dynamic Facility Location Problem with Generalized Modular Capacities, a multi-period

facility location problem in which the costs for capacity changes are defined for all pairs of capacity levels.

The problem embeds a complex cost structure and generalizes several existing facility location problems,

such as those that allow temporary facility closing or capacity expansion and reduction. As the model may

grow very large, general-purpose mixed-integer programming (MIP) solvers are limited to solving instances

of small to medium size. In this paper, we extend the generalized model to the case of multiple commodities.

We propose Lagrangian heuristics, based on subgradient and bundle methods, to find good quality solutions

for large-scale instances with up to 250 facility locations and 1000 customers. To improve the final solution

quality, a restricted MIP model is solved based on the information collected through the solution of the

Lagrangian dual. Computational results show that the Lagrangian based heuristics provide highly reliable

results for all problem variants considered. They produce good quality solutions in short computing times

even for instances where state-of-the-art MIP solvers do not find feasible solutions. The strength of the

formulation also allows the method to provide tight bounds on the optimal value.
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1. Introduction

Dynamic facility location problems aim at providing capacity planning over a multiple-period

planning horizon. Given that customer demands may vary significantly over time, facilities often

adjust their capacities. These problems find applications in both the public and private sectors,

for the location of production facilities (Fleischmann et al. 2006), schools (Peeters and Antunes

2001), health care facilities (Correia and Captivo 2003, Kim and Kim 2013) and many more, as

documented in several recent literature surveys (Thomas and Griffin 1996, Brotcorne et al. 2003,

Revelle et al. 2008, Melo et al. 2009, Smith et al. 2009). To represent the adjustment of capacities

in such problems, common actions include capacity expansion and reduction (Luss 1982, Jacobsen

1990, Peeters and Antunes 2001, Troncoso and Garrido 2005, Dias et al. 2007), temporary closing

of facilities (Chardaire and Sutter 1996, Canel et al. 2001, Dias et al. 2006) and the relocation

of facilities (Melo et al. 2006). Although mathematical models often take into account complex

environments such as complete supply chains, the cost structure to adjust capacities along time

is commonly modeled in less detail. Economies of scale are often represented on the level of the

total capacity involved in each operation, but do not take into consideration the capacity level

before the change. A more detailed representation of the cost structure is necessary in a number of

applications, especially in the domains of transportation, logistics and telecommunications, where

additional capacity gets cheaper (or more expensive) when approaching the maximum capacity

limit. For instance, in the problem introduced by Jena et al. (2012), logging camps are located to

host workers in the forest industry. In this problem, the total capacity of a camp is represented by

its number of different hosting units, while additional units provide supporting infrastructure. As

the relation between the number of different units cannot be captured by a simple function, the

costs for capacity changes need to be described in a transition matrix.

Jena et al. (2013) recently introduced the Dynamic Facility Location Problem with Generalized

Modular Capacities (DFLPG), in which the costs for capacity changes are based on a cost matrix.

The mixed-integer programming (MIP) model presented by the authors therefore allows taking
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into account not only the total capacity involved in the capacity change, but also the current

capacity level. This model generalizes several multi-period facility location problems: the problem

with facility closing and reopening, the problem with capacity expansion and reduction, and the

combination of the two. In addition, the DLFPG provides a strong linear programming (LP)

relaxation bound. Compared to alternative MIP formulations, the DFLPG based models can often

be solved twice as fast using a general-purpose MIP solver. Although it is possible to solve the

models for small and medium size instances, they usually grow too large when considering more

complex problem variants or larger instances. In this case, heuristics are an interesting alternative.

They also provide an advantage when performing “what-if” analysis, which requires repeatedly

solving the problem with different scenarios. Heuristics are usually capable of using solutions for a

certain scenario to quickly find solutions for a different one.

Metaheuristics such as tabu search, simulated annealing and genetic algorithms have been fre-

quently applied to several families of location problems, from classical facility location problems

(Arostegui et al. 2006) to logistics network design that model entire supply chains (Lee and Dong

2008, Melo et al. 2011). Lagrangian relaxation based heuristics have been developed for several

variants of single-period facility location problems (Barcelo et al. 1990, Sridharan 1991, Beasley

1993, Sridharan 1995, Holmberg and Ling 1997, Agar and Salhi 1998, Holmberg and Yuan 2000,

Correia and Captivo 2003, Wu et al. 2006), some of which combined Langrangian relaxation and

local search (Correia and Captivo 2006, Li et al. 2009). Lagrangian bounds have also been used

within exact methods (Görtz and Klose 2012). For multi-period facility location, approaches based

on Lagrangian relaxation have been proposed for problems without capacities (Chardaire and Sut-

ter 1996), with fixed capacities (Shulman 1991), and for multi-echelon problems in the context

of supply chain design (Diabat et al. 2011). Furthermore, Lagrangian based methods have been

successfully applied to other location problems such as dynamic hub location (Elhedhli and Wu

2010, Contreras et al. 2011).

In this paper, we present an extension of the DFLPG in which customers have demands for

different commodities. We propose Lagrangian based heuristics that find good quality solutions
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in reasonable computing times. Two methods are introduced to solve the Lagrangian dual: a

subgradient method and a bundle method. After this process, a second optimization step is used

to improve the solution quality. This step consists of solving a restricted MIP model, taking into

consideration only decisions that have been part of a significant number of the previous Lagrangian

solutions. To the best of our knowledge, this work is the first to present a Lagrangian relaxation

approach to solve large-scale instances of a multi-period facility location problem of this nature, i.e.,

including modular capacity levels and multiple commodities. Given the strength of the formulation

used to model the DFLPG, the Lagrangian heuristics are capable of providing relatively tight

bounds on the optimal value. The results are stable even for large instances, where general-purpose

MIP solvers either consume too much memory or do not solve the problem in reasonable time.

Given the generality of the DFLPG, the proposed heuristic can handle an entire class of problems,

consisting of all those that can be modeled by the DFLPG.

The remainder of the paper is organized as follows. Section 2 reviews and extends the MIP

formulation for the DFLPG and shows how it can be used to model three different special cases.

Section 3 explains how the problem is decomposed via Lagrangian relaxation and outlines the

resulting heuristics. Section 4 then discusses how the final solution quality can be improved in a

second optimization phase, using information from the solution of the Lagrangian dual to generate

a restricted MIP model. The Lagrangian heuristics are then compared by means of computational

experiments in Section 5. First, general results are presented for each of the different problem

variants. Then, the advantages of the Lagrangian heuristics are illustrated with more detailed

results comparing their performance to a state-of-the-art MIP solver. Finally, conclusions are drawn

and future research directions are discussed in Section 6.

2. Mixed Integer Programming Formulation

This section first introduces a general formulation for the DFLPG and then explains how it can

be used to model three special cases.
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2.1. General Model

We consider the mixed-integer programming formulation introduced by Jena et al. (2013) and

extend it to include multiple commodities. We denote by J the set of candidate facility locations

and by L= {0,1,2, . . . , q} the set of possible capacity levels for each facility. We also denote by I

the set of customer demand points and by T = {1,2, . . . , |T |} the set of time periods in the planning

horizon. We assume throughout that the beginning of period t+1 corresponds to the end of period

t. Additionally, we denote by P = {1,2, . . . , |P |} the set of different commodities. The demand of

customer i for commodity p in period t is denoted by dipt, while the cost to serve one unit of

commodity p from facility j operating at capacity level ` to customer i during period t is denoted

by gij`pt. The capacity of a facility of size ` at location j is given by uj` (with uj0 = 0). The cost

matrix fj`1`2t describes the combined cost to change the capacity level of a facility at location j

from `1 to `2 at the beginning of period t and to operate the facility at capacity level `2 throughout

time period t. Furthermore, we let `j be the initial capacity level of an existing facility at location

j.

To formulate the problem, we use binary variables yj`1`2t equal to 1 if and only if the facility

at location j changes its capacity level from `1 to `2 at the beginning of period t. The allocation

variables xij`pt denote the fraction of the demand of customer i for commodity p in period t that

is served from a facility of size ` located at j. Using this notation, we define the following MIP

model, referred to as the Generalized Modular Capacities (GMC) formulation:

(GMC) min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t +
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

gij`tdiptxij`pt (1)

s.t.
∑
j∈J

∑
`∈L

xij`pt = 1 ∀i∈ I, ∀p∈ P, ∀t∈ T (2)

∑
i∈I

∑
p∈P

diptxij`pt ≤
∑
`1∈L

uj`yj`1`t ∀j ∈ J, ∀`∈L, ∀t∈ T (3)

∑
`1∈L

yj`1`(t−1) =
∑
`2∈L

yj``2t ∀j ∈ J, ∀`∈L, ∀t∈ T\{1} (4)

∑
`2∈L

yj`j`21 = 1 ∀j ∈ J (5)
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xij`pt ≥ 0 ∀i∈ I, ∀j ∈ J, ∀`∈L, ∀p∈ P, ∀t∈ T (6)

yj`1`2t ∈ {0,1} ∀j ∈ J, ∀`1 ∈L, ∀`2 ∈L, ∀t∈ T. (7)

The objective function (1) minimizes the total cost for changing the capacity levels and allocating

the demand. Constraints (2) are the demand constraints for the customers. Constraints (3) are

the capacity constraints at the facilities. Constraints (4) link the capacity change variables in

consecutive time periods. Finally, constraints (5) specify that exactly one capacity level must be

chosen at the beginning of the planning horizon. Note that the flow constraints (4) and (5) further

guarantee that, in each time period, exactly one capacity change variable is selected.

We may also adapt two types of valid inequalities to be used in the GMC formulation:

xij`pt ≤
∑
`1∈L

yj`1`t ∀i∈ I, ∀j ∈ J, ∀`∈L, ∀p∈ P, ∀t∈ T. (8)

∑
j∈J

∑
`1∈L

∑
`2∈L

uj`2yj`1`2t ≥
∑
i∈I

∑
p∈P

dipt ∀t∈ T. (9)

The Strong Inequalities (SI) (8), typically used in facility location and network design problems

(see, for instance, Gendron and Crainic 1994), are known to provide a tight upper bound for the

demand assignment variables. The SIs may be added to the model either a priori or in a branch-

and-cut manner only when they are violated in the solution of the LP relaxation. The set of valid

inequalities (9) is referred to as the Aggregated Demand Constraints (ADC). Although they are

redundant for the LP relaxation, adding them to the model enables MIP solvers to generate cover

cuts that further strengthen the formulation.

2.2. Special Cases

We now illustrate how special cases can be modeled by using the GMC formulation. As will be

explained in Section 4, our solution approach can be tailored to take advantage of the special

structure of each problem variant. Jena et al. (2013) explicitly show how to model two problem

variants, using the GMC formulation: facility location with closing and reopening of facilities and

facility location with capacity expansion and reduction. In the first problem, the size of the facility
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is chosen from a discrete set of capacity levels. Existing facilities may then be closed and reopened

multiple times. In the second problem considered, capacities can be adjusted by the use of a single

facility at each location. At each facility, the capacity can be expanded or reduced from one capac-

ity level to another. It is assumed that an expansion of ` capacity levels has always the same cost,

regardless of the previous capacity level. These two problems are denoted as the Dynamic Mod-

ular Capacitated Facility Location Problem with Closing and Reopening (DMCFLP CR) and the

Dynamic Modular Capacitated Facility Location Problem with Capacity Expansion and Reduction

(DMCFLP ER), respectively.

A subset of capacity change variables yj`1`2t is chosen to model these special cases. The cost

coefficients fj`1`2t for these variables are based on the following fixed costs, defined to characterize

the special cases:

• ccj` and coj` are the costs to temporarily close and reopen a facility of size ` at location j,

respectively;

• f cj` and foj` are the costs to reduce and to expand the capacity of a facility at location j by `

capacity levels, respectively;

• F o
j` is the cost to maintain an open facility of size ` at location j throughout one time period.

For the problem variant involving facility closing and reopening, we create an artificial capacity

level ` for each capacity level `∈L\{0}. Capacity level ` represents the state in which a facility of

size ` is temporarily closed. At each time period t ∈ T and location j ∈ J , we may find capacity

transition decisions yj`1`2t that represent different types of operations (note that the costs for

these decisions are usually composed by the cost to perform the capacity transition, as well as the

maintenance cost for the new capacity level):

1. Facility construction and capacity expansion. The expansion of the capacity is represented

by a capacity transition from capacity level `1 to any other capacity level `2 > `1. If the decision

represents a facility construction, then `1 is 0. The capacity is thus expanded by `2 − `1 capacity

levels. The cost for this decision is set to fj`1`2t = foj(`2−`1) +F o
j`2

.
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2. Capacity reduction. The reduction of the capacity is represented by a transition from capacity

level `1 to any other capacity level `2 < `1. The capacity is thus reduced by `1− `2 capacity levels.

The cost for this decision is set to fj`1`2t = f cj(`1−`2) +F o
j`2

.

3. Maintaining the current capacity level. A facility may neither expand nor reduce the cur-

rent capacity level. The cost of this transition is thus only composed of the maintenance cost,

i.e., fj`1`1t = F o
j`1

if the capacity level represents an open facility, fj`1`1t = 0 if the capacity level

represents a temporarily closed facility and fj00t = 0 if no facility exists.

4. Temporary closing. An open facility of size `1 can be temporarily closed, i.e., it changes to

capacity level `1. The total cost is fj`1`1t = ccj`1 .

5. Reopening a closed facility. A temporarily closed facility of size `1 can be reopened, i.e., it

changes its capacity level from `1 to `1. The total cost for this decision is fj`1`1t = coj`1 +F o
j`1

.

The DMCFLP CR is represented by transition decisions of type 1 (for construction only), 3, 4 and

5. We denote the resulting model as the CR-GMC formulation. The DMCFLP ER is represented by

transition decisions of type 1, 2 and 3. The resulting model is denoted as the ER-GMC formulation.

Jena et al. (2013) also refer to a third problem variant, which combines both features of the two

special cases. It is denoted as the Dynamic Modular Capacitated Facility Location Problem with

Closing/Reopening and Capacity Expansion/Reduction (DMCFLP CR ER). The problem variant

is modeled by using the transition decisions of type 1 – 5 presented above. However, these decisions

allow only one single operation, for example either capacity reduction or facility closing, at each

time period. In practice, it is very likely that one may want to reduce or expand the capacity

before closing or after reopening a facility at the same time period. We may therefore consider four

additional decision types that represent combinations of such operations:

(a) A facility is reopened at level `1 and its capacity is expanded to level `2 > `1 at the same

time period.

(b) A facility is reopened at level `1 and its capacity is reduced to level `2 < `1 at the same time

period.
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(c) The capacity of a facility at level `1 is expanded to level `2 > `1 and the facility is closed

right after.

(d) The capacity of a facility at level `1 is reduced to level `2 < `1 and the facility is closed right

after.

By making the realistic assumption that the costs for closing and reopening a facility are non-

decreasing as the size of the facility increases, we may discard two of the four possibilities.

Proposition 1. Let coj` ≤ coj(`+1) and ccj` ≤ ccj(`+1) for `= 0,1,2, . . . , (q−1), then there is at least

one optimal solution that does neither use decisions of type (b) nor of type (c).

PROOF. Note that case (c) may only occur in two situations: either the facility stays closed

until the end of the planning horizon or the facility is reopened at a later moment. If the facility

stays closed, then closing it at level `1 is at most as expensive as combined capacity expansion and

closing as suggested in case (c): ccj`1 ≤ f
o
j(`2−`1) + ccj`2 . If the facility is closed at the beginning of

time period t1, but it will be reopened at the beginning of period t2 > t1, then the corresponding

costs using case (c) are given by: Cc = ccj`1 +foj(`2−`1) + coj`2 +F o
j`2

. However, the same solution may

be reproduced by closing the facility at level `1 and expanding its capacity only after it has been

reopened using case (a), which corresponds to the following costs: Ca = ccj`1 + coj`1 +foj(`2−`1) +F o
j`2

.

Now, because coj`1 ≤ c
o
j`2

, we have: Ca ≤ Cc. Therefore, a solution using case (a) is at most as

expensive as a solution using case (c).

The same can be shown for the relation between cases (d) and (b), where reducing the capacity

before temporary closing is as most as costly as reducing the capacity after temporary closing.

Q.E.D.

We thus add only the transition decisions given by the cases (a) and (d) to the model:

6. Reopening and capacity expansion. A closed facility of capacity level `1 is reopened and its

capacity is expanded to level `2 (with `1 < `2). The cost for this decision, including the maintenance

costs at capacity level `2 is thus set to fj`1`2t = ccj`1 + foj(`2−`1) +F o
`2

.
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7. Capacity reduction and facility closing. An open facility reduces its capacity from level `1 to

level `2 (with `1 > `2) and is temporarily closed afterwards. The cost for this decision, including

the maintenance costs at capacity level `2 is thus set to fj`1`2t = f cj(`1−`2) + ccj`2 .

3. Lagrangian Relaxation

When applying Lagrangian relaxation to capacitated facility location problems, it is common to

relax either the capacity constraints or the demand constraints. Since relaxing the capacity con-

straints results in a subproblem that is NP-hard (Van Roy and Erlenkotter 1982, Barcelo et al.

1990), a more promising and popular choice in the literature (e.g., Shulman 1991, Beasley 1993, Wu

et al. 2006) is to relax the demand constraints (2), which yields a Lagrangian subproblem that can

be solved efficiently. Let α be the vector of Lagrange multipliers. After relaxing the demand con-

straints (2) and rearranging the terms in the objective function, we obtain the following Lagrangian

subproblem:

L(α) = min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

(gij`ptdipt−αipt)xij`pt +
∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (3)− (8).

Note that the Strong Inequalities (8) are included in the Lagrangian subproblem, since they are

easy to handle, as shown next.

3.1. Solution of the Lagrangian Subproblem

Let c̃ij`pt = gij`ptdipt − αipt denote the modified costs for the xij`pt variables. We separate the

Lagrangian subproblem into |J | independent subproblems, one for each candidate facility loca-

tion for a fixed set of Lagrangian multipliers α. The Lagrangian subproblem is solved as L(α) =∑
j∈J Lj(α) +

∑
i∈I
∑

p∈P
∑

t∈T αipt, where Lj(α) is defined as follows:

Lj(α) = min
∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t +
∑
i∈I

∑
`∈L

∑
p∈P

∑
t∈T

c̃ij`ptxij`pt
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s.t.
∑
i∈I

∑
p∈P

diptxij`pt ≤
∑
`1∈L

uj`yj`1`t ∀`∈L, ∀t∈ T

∑
`1∈L

yj`1`(t−1) =
∑
`2∈L

yj``2t ∀`∈L, ∀t∈ T\{1}

∑
`2∈L

yj`j`21 = 1

xij`pt ≤
∑
`1∈L

yj`1`t ∀i∈ I, ∀`∈L, ∀p∈ P, ∀t∈ T

xij`pt ≥ 0 ∀i∈ I, ∀`∈L, ∀p∈ P, ∀t∈ T

yj`1`2t ∈ {0,1} ∀`1 ∈L, ∀`2 ∈L, ∀t∈ T.

Each of these subproblems (one for each location j ∈ J) is concerned with finding the optimal

capacity planning over time, i.e., an optimal schedule to open facilities of a certain size such that

the total cost composed by demand allocation costs (considering the modified costs c̃ij`pt) and the

costs to change capacity levels is minimal. We can solve this problem using dynamic programming

by adapting the approach presented by Shulman (1991). Let Lαj (`, t) denote the cost for an optimal

demand allocation at period t assuming that a facility of size ` is available. For a given set of

multipliers α, let Oα
j (`, t) denote the optimal cost to serve all demands by facility j throughout the

time periods 0, . . . , t, with a facility of size ` at the end of period t. For ` > 0, t > 0, the optimal

value of Oα
j (`, t) is composed of the costs for demand allocation in period t, the capacity transition

to level `, the facility maintenance at level `, and the optimal cost to serve all demands in previous

time periods at the capacity level that minimizes the total cost. They can be computed by the

following recurrence formula:

Oα
j (`, t) =Lαj (`, t) + min

0≤`1≤q
{fj`1`t +Oα

j (`1, t− 1)}.

Note that Lαj (0, t) = 0 since demand cannot be allocated to a facility with capacity level 0. Fur-

thermore, for t= 0 the size of the facility that exists at the beginning of the planning horizon is

`j. We therefore have: Oα
j (`,0) = fi`j`t +Lαj (`,0).
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The subproblem is then solved by selecting the facility size at the last time period that has the

lowest total cost:

Lj(α) = min
0≤`≤q

{
Oα
j (`, |T |)

}
.

Note that, without the use of the SIs, the Lagrangian subproblem does not possess the integrality

property (Geoffrion 1974), since facility capacities will only be opened as much as forced by the

capacity constraints, i.e.,
∑

`1∈L yj`1`t =
∑

i∈I
∑

p∈P (diptxij`pt)/uj`, which may be fractional. Adding

the SIs to the problem strengthens the dependence between the opening decisions and the demand

allocation:
∑

`1∈L yj`1`t = maxi∈I,p∈P{xij`pt}. The variables xij`pt (and therefore also one of the

corresponding yj`1`2t variables) will take value 1 if their modified costs c̃ij`pt compensate the costs

for the open facility. As a consequence, using the SIs, the Lagrangian subproblem also has the

integrality property. The lower bound provided by the Lagrangian dual will therefore never be

better than the bound provided by the LP relaxation of the original problem using the SIs.

Computation of the Optimal Demand Allocation. The optimal demand allocation Lαj (`, t)

at location j assumes that a facility of size ` is available and can be computed by solving a fractional

knapsack problem (subject to the capacity constraints and the SIs):

Lαj (`, t) = min
∑
i∈I

∑
p∈P

c̃ij`ptxij`pt

s.t.
∑
i∈I

∑
p∈P

diptxij`pt ≤ uj`

0≤ xij`pt ≤ 1 ∀i∈ I,∀p∈ P.

This problem can be solved by sorting all x variables in increasing order of their ratio c̃ij`pt/dipt,

selecting those with the most negative ratio until the capacity is completely filled or all variables

with negative ratios have been selected. To be precise, we repeatedly select the variables with the

most negative ratio for < i,p > and increase the variable value to the maximum value possible,

updating the remaining knapsack capacity u′j` after each variable selection:

< i∗, p∗ >= argmin
i∈I,p∈P

{
c̃ij`pt
dipt

}
, xij∗`p∗t = min

{
1,
u′j`
dipt

}
.

Clearly, all other x variables are set to 0.
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3.2. Solution of the Lagrangian Dual

The solution of the Lagrangian subproblem, for any choice of the Lagrange multipliers α, provides a

lower bound to the DFLPG. To obtain the best possible lower bound, one must solve the Lagrangian

dual:

z∗ = max
α

L(α).

The Lagrangian function L(α) is non-differentiable. However, a subgradient direction can be

easily computed. We consider two different methods to solve the Lagrangian dual: a subgradient

method and a bundle method.

Subgradient Method. The subgradient direction γipt at the k− th iteration is computed as the

violation of the relaxed constraints when x is fixed to the values found by solving the Lagrangian

subproblem:

γkipt = 1−
∑
j∈J

∑
`∈L

xij`pt ∀i∈ I, ∀p∈ P, ∀t∈ T.

We choose the step size λk at iteration k as suggested by Held et al. (1974) and often used in

other works (Shulman 1991, Sridharan 1991, Correia and Captivo 2003):

λk = δk
Ẑ −Lk(α)∑

i∈I
∑

p∈P
∑

t∈T (γkipt)
2
,

where δk is a scalar, Lk(α) equals the value of L(α) at iteration k and Ẑ is the cost of the best

feasible solution found so far. The Lagrange multipliers for the (k + 1) − th iteration are then

updated by:

α
(k+1)
ipt = αkipt +λkγkipt ∀i∈ I, ∀p∈ P, ∀t∈ T.

Bundle Method. The second method used to solve the Langrangian dual is an implementation

of the bundle method (Frangioni 2005). The method uses a subset of the tuples < L(αs), γs >
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with s∈B and B is referred to as the bundle of subgradients γs. From the primal view point, the

following quadratic problem has to be solved at each iteration (Frangioni and Gallo 1999):

min
θs

{
1
2
‖
∑
s∈B

γsθs ‖2 + 1
R
EBθ; s.t.

∑
s∈B

θs = 1, θ≥ 0

}
,

where R is the so called trust region, and Es = L(α) + γ(α̂− α)−L(α̂) is the linearization error

from the current point α̂. The solution values for θs, given for each bundle member, hold valuable

information and can be used to construct feasible integer solutions (see Section 4.2). The tentative

ascent direction is then computed by the convex combination of the subgradients, using the convex

multipliers θ. Alternatively, the dual problem can be solved to compute the ascent direction, or

directly the new point. Frangioni and Gallo (1999) elaborate on this relationship in detail.

Bundle methods usually possess stronger convergence properties than the subgradient method.

However, they also tend to require more time to compute the Lagrange multipliers. They are

therefore beneficial when a small number of iterations is performed to reach the desired accuracy.

3.3. Upper Bound Generation

At each iteration, a feasible solution is generated based on the Lagrangian solution obtained by

solving the Lagrangian subproblem. This solution provides an upper bound for the optimal inte-

ger solution of the problem that directly impacts the convergence of the subgradient and bundle

methods. Even though high quality upper bounds are desirable, it is important that they are gen-

erated in an efficient manner, as the solution of the Lagrangian dual typically involves hundreds

of iterations.

The solution of the Lagrangian subproblem provides a facility opening schedule for the entire

planning horizon. This schedule is defined by capacity levels `′jt indicating the facility size at

locaton j at time period t. In addition to the schedule, the Lagrangian solution provides a demand

allocation. As the demand constraints (2) have been relaxed, the customer demands dipt are either

exactly met, under-served or over-served.
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The set of all customer demands can therefore be separated into three subsets, where Σ1, Σ2

and Σ3 denote the demands defined by triplets < i,p, t >, which are exactly met, over-served and

under served, respectively:

Σ1 =

{
< i,p, t >:

∑
j∈J

xij(`′jt)pt = 1

}
,Σ2 =

{
< i,p, t >:

∑
j∈J

xij(`′jt)pt > 1

}

and Σ3 =

{
< i,p, t >:

∑
j∈J

xij(`′jt)pt < 1

}
.

To obtain an integer feasible solution, we heuristically reduce redundant demand allocation for

the pairs in Σ2 and increase missing demand allocation for the pairs in Σ3. Note that the heuristic

to increase available capacity is very simple. The difficulty here is to find general rules that perform

well on the different problem variants that may be modeled by the use of the GMC formulation.

The heuristic procedure used to obtain a feasible solution is composed of the following steps:

1. Reduce demand allocation: For each < i,p, t >∈ Σ2, all facility/size pairs (j, (`′jt)) are

sorted in decreasing order of their allocation costs diptgij`pt. The allocated flow is removed until

the total allocated demand for < i,p, t > equals 1.

2. Increase capacities: If the total remaining capacity is smaller than the total remaining

demand, we increase the capacity sequentially for each time period according to the following steps

until the total demand can be met. Facilities are considered without a specific order. We consider

two simple possibilities to increase capacity: if a facility is already open at any moment in the

planning horizon, we increase the capacity for the current time period to its maximum capacity

level throughout the planning; if no facility exists, we increase the capacity level until the missing

capacity is covered or the maximum capacity level for this facility is reached.

3. Increase the demand allocation: For each < i,p, t >∈ Σ3, all facility/size pairs (j, (`′jt))

with remaining capacity are sorted in increasing order of their allocation costs diptgij`pt. Demand

is allocated to these pairs until the total allocated demand for < i,p, t > equals 1.

4. Reduce unused capacities of open facilities: For each facility, we use a dynamic pro-

gramming algorithm, similar to the one used to solve Lagrangian subproblem, to compute the
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optimal opening schedule (i.e., the one with the lowest costs) that guarantees sufficient capacity

to satisfy the demand allocated to that facility.

Even though the resulting solution is integer feasible, its demand allocation may still be improved.

Therefore, a final step consists in computing the optimal demand allocation for the current opening

schedule using the CPLEX network algorithm.

4. Upper Bound Improvement: Restricted MIP Model

The previous section outlined the heuristic procedure to generate integer feasible solutions. This

heuristic focuses on efficiency rather than on the quality of the upper bound. However, the objective

of the Lagrangian heuristic is to provide high quality solutions. It is therefore beneficial to add

an optimization phase that aims at finding solutions of higher quality than those already found

during the solution of the Lagrangian dual. Either one tries to improve promising solutions that

have been found during the Lagrangian dual method, or one constructs new solutions based on

information gathered during the process.

Local improvement heuristics, based on already available solutions, have been successfully applied

in a second optimization phase after performing a Lagrangian relaxation method (e.g., Correia and

Captivo 2006, Li et al. 2009). However, they require a detailed knowledge of the problem structure.

As seen in Section 2.2, the GMC is a fairly general model, capable of representing different facility

location problems. In some cases, certain capacity levels represent open facilities, whereas other

capacity levels represent closed facilities. Given the flexibility regarding the usage of capacity levels,

it is beneficial to use a more general mechanism to find high quality solutions.

4.1. MIP Model Based on Lagrangian Solutions

The Lagrangian heuristic proposed in this work involves a second optimization phase using infor-

mation collected during the solution of the Lagrangian dual. We solve a restricted MIP, taking into

consideration the decisions made by the Lagrangian solutions. One would expect that the larger

the decision space is, the better the quality of the final solution will be. However, this is only true

without memory and computing time limitations. Given those limitations, a large MIP may result
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in a low overall performance, as the model is too large to be solved with the available time and

memory resources. We therefore filter the decisions considered in the restricted MIP to sufficiently

reduce the size of the model.

Let nIter denote the number of iterations performed by the subgradient or by the bundle method.

Let nCj`t be the number of Lagrangian solutions where capacity level ` has been selected for location

j at time period t (note that we have
∑

`∈L n
C
j`t = nIter for each j and t). Furthermore, let LRjt be

the set of capacity levels for location j and period t available in the restricted MIP. The restricted

MIP is then defined as follows:

• Decision fixing. For each j and t, a decision is fixed to capacity level ` if it appears in at

least 100× pF ix (with pF ix∈]0.5,1]) percent of all iterations, i.e, LRjt = {`}, if nCj`t/n
Iter ≥ pF ix.

• Selection of available capacity levels. If the capacity level for location j and time period t

is not fixed, LRjt is composed by the nS capacity levels that appear the most often in the Lagrangian

solutions (i.e., have the highest nCj`t) and appear in at least one Lagrangian solution (i.e., nCj`t ≥ 1).

• Defining the set of capacity transitions. Decisions yj`1`2t are defined for all combinations

between `1 and `2, with `1 ∈LRjt and `2 ∈LRj(t+1), if available in the original GMC formulation.

Using appropriate values for the parameters pF ix and nS, the original GMC model can be

reduced to a restricted version with reasonable memory and computing time requirements, taking

into consideration only decisions that have been found to be significant by the Lagrangian solutions.

4.2. MIP Model Based on Convexified Bundle Solutions

When using the bundle method to solve the Lagrangian dual, we may take advantage of the

information the method holds concerning the set of solutions that are linked to the subgradients

in the bundle, as demonstrated by Borghetti et al. (2003).

As explained in Section 3.2, the bundle method provides a multiplier θs for each Lagrangian

solution s such that
∑

s θ
s = 1. The value θs can be seen as a probability that solution s provides

a good opening schedule. We may therefore derive probabilities for each of the opening decisions

ỹj`t =
∑

s θ
sysj`t, where ysj`t is 1 if solution s selects capacity level ` for location j at period t.
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We may now construct a restricted MIP, as previously shown based on the Lagrangian solutions.

Instead of using the number of occurrences nCj`t in Lagrangian solutions, we use the value of ỹj`t ∈

[0,1], defining its importance according to the multipliers θs provided by the bundle method. In

this case, a capacity level ` is fixed at location j and period t if ỹj`t ≥ pF ix, where pF ix ∈]0.5,1].

Otherwise, LRjt is composed by the nS capacity levels with the highest ỹj`t values, with ỹj`t ≥ 0.001.

Note that the Lagrangian solutions linked to the subgradients that are stored in the bundle are

only a subset of those generated in all iterations. The set of decisions considered in the restricted

MIP based on the convexified bundle solution is therefore very likely to be much smaller than the

restricted MIP based on all Lagrangian solutions.

5. Computational Results

In this section, the performance of different configurations for the Lagrangian heuristics and that of

the MIP solver CPLEX will be evaluated and compared by means of computational experiments.

First, we discuss how test instances were generated. Then, we elaborate on the integrality gap

of the different problems. Finally, computational results are presented to explore the impact of

parameter choices for the Lagrangian heuristics and to compare different configurations with each

other and with CPLEX.

Test instances have been generated by following a scheme similar to that described in Jena et al.

(2013). However, the instances used in this previous work included only one commodity, up to 100

candidate facility locations and up to 1000 customer locations. In this work, we use instances that

are significantly larger with respect to the number of candidate facility locations and the number of

commodities. Instances have been generated with different numbers of candidate facility locations

|J | and customers |I|, combining all pairs of |J | ∈ {50,100,150,200,250} and |I| ∈ {|J |,4 · |J |}. The

highest capacity level at any facility, denoted by q, has been selected such that q ∈ {3,5,10}. Three

different networks have been randomly generated on squares of the following sizes: 300km, 380km

and 450km. We consider two different demand scenarios. In both scenarios, the demand for each of

the customers is randomly generated and randomly distributed over time. The two scenarios differ
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in their total demand summed over all customers in each time period. In the first scenario (regular),

the total demand is similar in each time period. The second scenario (irregular) assumes that the

total demand follows strong variations along time and therefore varies at each time period. The

number of commodities |P | has been selected such that |P | ∈ {1,3,5}. The demands for the second

to fifth commodities are computed based on the demand for the first commodity. To be precise,

the demand djpt for p ≥ 2 is computed as djpt = dj1t · rand(1.0,0.2) · avgDemp/avgDem1, where

avgDem1 = 10, avgDem2 = 6, avgDem3 = 9, avgDem4 = 5, avgDem5 = 8, and rand(1.0,0.2) is

a random variable with normal distribution, mean value of 1.0 and standard deviation of 0.2.

Construction and operational costs follow concave cost functions, i.e., they involve economies of

scale. Jena et al. (2013) also tested a second cost scenario in which the transportation costs are five

times higher. The authors found that these instances are significantly easier to solve. In this work,

we only consider the instances that are more difficult to solve, i.e., the ones with their original level

of transportation costs. The combination of the different properties listed above results in a total

of (5× 2× 3× 3× 2× 3 =) 540 instances. All instances contain ten time periods, which is found to

be sufficient to demonstrate capacity changes along time and small enough to not increase the size

of the models too much. Note that we assume that the problem instances do not contain initially

existing facilities. We refer to Appendix A for a detailed description of the parameters used to

generate the instances.

All mathematical models and the Lagrangian based heuristics have been implemented in C/C++

using the IBM CPLEX 12.6.0 Callable Library. The code has been compiled and executed on

openSUSE 11.3. Each problem instance has been run on a single Intel Xeon X5650 processor

(2.67GHz), limited to 24GB of RAM.

5.1. Integrality Gaps of the Test Instances

The integrality gap is defined as the difference between the optimal LP relaxation solution value

and the cost of an optimal integer solution, divided by the latter. For many instances, the GMC

models are very large and exceed the available memory of 24GB. It was therefore not possible
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to find all of these optimal values. The integrality gap has been exactly determined only for a

subset of the 540 instances. Considering the best lower and upper bounds obtained throughout all

computational experiments, optimality has been proved for 302, 388, 384 and 382 instances for the

DFLPG, the DMCLFP CR, the DMCFLP ER and the DMCFLP CR ER, respectively.

As observed in Jena et al. (2013), the integrality gap for the GMC based formulations tend to be

very small. This turns out to be useful for two reasons. First, when using Lagrangian relaxation,

the provided bounds are more meaningful. Low integrality gaps may help to prove optimality

within a certain tolerance. Second, the input data for multi-period facility location problems usually

comes from forecasts, and it is very likely that the real data will slightly deviate from the forecast,

especially for the last time periods. An optimal solution may therefore not be more relevant in

practice than a solution that guarantees optimality within a certain tolerance. Melo et al. (2011)

therefore aim at a finding solutions within 1% from the optimal solution. On the instances used

in this work, the integrality gap has been found to be smaller than or equal to 1% for a fairly

large part of the instances. To be precise, the integrality gap is smaller than or equal to 1% for

at least 413, 397, 410 and 397 instances for each the four problems, respectively. The Lagrangian

relaxation may therefore prove optimality within a deviation of 1% for a large part of the instances

if its lower bounds are close to the LP relaxation bounds and its generated upper bounds (i.e., the

feasible solutions generated throughout the Lagrangian relaxation) are close to optimal.

5.2. Comparison of Different Configurations for the Lagrangian Heuristics

We now compare the performance of different configurations for the Lagrangian relaxation based

heuristics. Section 3 discussed two different methods to solve the Lagrangian dual, the subgradient

method and the bundle method. These methods can be used to generate feasible solutions at

each iteration. Furthermore, it has been shown in Section 4 how information from the Lagrangian

solutions and the convexified bundle solutions can be collected throughout the solution of the

Lagrangian dual, and then be used to generate a restricted MIP to find solutions of even better

quality.
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Parameter Settings. The subgradient method is used with an initial scalar δk = 2.0. This scale

factor halves every 25 consecutive iterations without improvement in the lower bound. The algo-

rithm terminates if δk falls below 0.005. For the bundle method, an implementation similar to the

one described by Frangioni (2005) has been used as a black box. The bundle implementation has

four principal internal performance and termination criteria, which are set as follows. Parameters

tStar, EpsLin have been set to 104 and 10−6, respectively. The long-term t-strategy has been set to

“soft” with a parameter value of 0.1. In addition to the stopping criteria mentioned above, a 1%

optimality stopping criterion has been used, i.e., the algorithms stop as soon as the best lower and

upper bounds found are within 1%. All experiments have been limited to a maximum of 2 hours

of computing time.

5.2.1. Combining the Lagrangian Dual Solution Methods with a Restricted MIP

After performing the subgradient method, a restricted MIP can be solved based on the Lagrangian

solutions (see Section 4.1). When using the bundle method, the restricted MIP can be generated

based on either the Lagrangian solutions or on the convexified bundle solution (see Section 4.2).

We now compare the performance of different combinations for the heuristic, i.e., the use of the

subgradient method and the bundle method to solve the Lagrangian dual, and the use of the

restricted MIP based on Lagrangian solutions and the convexified solutions to further improve the

solution quality. The bundle method has shown significantly faster convergence than the subgradi-

ent method. We therefore stop the method when a maximum of 500 iterations has been performed.

For the subgradient method, due to its slower convergence, we also tested configurations with a

maximum of 1000 iterations.

Table 1 summarizes the results for seven different solution strategies: the subgradient method

without (“only”) and with a restricted MIP based on the Lagrangian Solutions (“w/ LS R-MIP”),

as well as the bundle method without (“only”) and with a restricted MIP, based either on the

Lagrangian solutions (“w/ LS R-MIP”) or on the convexified bundle solution (“w/ CS R-MIP”).

As mentioned above, the subgradient method has been tested in two variants, stopping either after
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a maximum of 500 iterations or after a maximum of 1000 iterations. When using the restricted MIP

based on the Lagrangian solutions, we use parameter values that have led to good performance

(see Section 5.2.2): pF ix= 70% and nS = 3. For the bundle method with the restricted MIP based

on the convexified solutions, we used pF ix = 0.85 and nS = 4, which led to smaller average and

maximum optimality gaps than setting pF ix to 0.7, 0.8 or 0.9. Note that for the restricted MIP

based on the convexified solutions, we only tested nS values of 2, 3 and 4.

Subgradient method Bundle method
500 max iter 1000 max iter 500 max iter
only w/ LS only w/ LS only w/ LS w/ CS

R-MIP R-MIP R-MIP R-MIP
DFLPG
Avg Gap % 3.01 0.81 1.67 0.72 1.64 0.76 0.72
Max Gap % 17.31 17.31 13.06 7.28 8.83 7.85 2.88
Avg Time (sec) 374.8 1,140.0 486.5 714.5 258.9 844.6 359.3
# prov. 1% gap 211 386 329 407 331 405 407
DMCFLP CR
Avg Gap % 3.85 0.82 2.28 0.88 2.10 0.86 0.81
Max Gap % 22.26 12.96 14.38 9.73 10.39 10.39 3.78
Avg Time (sec) 846.9 1,532.2 1,130.1 1,447.2 617.8 1,370.0 884.6
# prov. 1% gap 160 378 287 385 292 392 397
DMCFLP ER
Avg Gap % 3.18 0.78 1.72 0.70 1.64 0.74 0.69
Max Gap % 17.58 14.68 12.45 6.63 10.47 8.56 2.57
Avg Time (sec) 379.5 1,137.0 484.4 712.9 247.7 833.9 348.8
# prov. 1% gap 205 391 317 405 325 410 411
DMCFLP CR ER
Avg Gap % 3.77 0.87 2.11 0.82 1.96 0.83 0.77
Max Gap % 21.00 17.76 15.92 8.37 10.14 9.15 3.44
Avg Time (sec) 840.3 1,703.7 1,091.7 1,493.7 569.9 1,335.4 857.6
# prov. 1% gap 174 373 295 389 310 399 395

Table 1 Comparison of different configurations for the Lagrangian based heuristics for the four problems.

The results take into account all 540 instances and are reported for each of the four problem

variants. We indicate the average and maximum gap (when compared to the best lower bounds

known for the instances), the average computing time and the number of instances for which a 1%

optimality has been proved (“# 1% gap proved”).

The results are consistent for the four different problem variants. Solving only the Lagrangian

dual, the bundle method clearly stays ahead of the subgradient method. Given its stronger conver-
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gence properties, it finishes, on average, in significantly shorter computing times. For the subgra-

dient method, allowing 1000 instead of 500 iterations strongly improves the solution quality. After

this first phase, a 1% optimality has been proved for more than half of the instances.

Adding the Lagrangian solution based restricted MIP to the subgradient method significantly

improved the optimality gap when up to 1000 iterations are performed. With only 500 iterations, the

improvement is less significant. This illustrates the importance of reasonably solving the Lagrangian

dual before constructing a restricted MIP, because “high-quality” decisions tend to appear in the

later stage of the subgradient method.

For the bundle method, a larger improvement of the maximum optimality gap can be observed.

Both versions of the restricted MIP result in very competitive results. The maximum optimality

gap is always kept below 4.25%, while the average computing time is very reasonable. Using the

restricted MIP to improve the solution quality, the number of instances where a 1% optimality

gap could be proved increased to over 75% of all instances. While both approaches show similar

maximum optimality gaps, the convexified solution presents better average gaps and is capable of

proving a 1% gap for more instances.

The results based on the bundle method are clearly better than those based on the subgradient

method, as the subgradient method itself already takes a significant portion of the available com-

puting time. Therefore, there is often not enough time left to solve the restricted MIP. However,

a heuristic based on the latter could still be effective. Tuning the maximum number of subgradi-

ent iterations and the parameters used to define the restricted MIP will hereby make the crucial

difference. Such tuning is exemplified in the next section.

5.2.2. Restricted MIP Parameter Tuning

The restricted MIP, performed after the solution of the Lagrangian dual, has to be sufficiently

restricted in a way in that it can be reasonably solved within the remaining time. This is done

by appropriately setting the two parameters nS and pF ix, indicating the maximum number of

decisions considered for each location and time period, and the percentage necessary to fix a

decision, respectively.
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pF ix nS = 2 nS = 3 nS = 4 nS = 10
51% Avg / Max gap % 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83

Avg time 233.3 sec 231.5 sec 231.2 sec 228.4 sec

70% Avg / Max gap % 0.82 / 5.37 0.80 / 5.37 0.80 / 5.37 0.80 / 5.37
Avg time 235.6 sec 239.3 sec 243.6 sec 242.3 sec

80% Avg / Max gap % 0.75 / 3.47 0.74 / 3.36 0.73 / 3.15 0.73 / 3.20
Avg time 286.6 sec 296.2 sec 301.1 sec 302.3 sec

90% Avg / Max gap % 0.74 / 7.85 0.72 / 3.35 0.71 / 3.35 0.71 / 3.35
Avg time 385.7 sec 415.0 sec 422.7 sec 419.6 sec

100% Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Avg time 597.7 sec 620.0 sec 623.3 sec 614.1 sec

No Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Fixing Avg time 582.2 sec 595.9 sec 613.6 sec 601.6 sec

Table 2 Comparison of results for different parameters for the bundle method with MIP based on Lagrangian

solutions, applied to the DFLPG.

Table 2 summarizes the results for different parameter values, using the bundle method with a

restricted MIP based on the Lagrangian solutions applied to the DFLPG. The results are given

for all combinations between different pF ix and nS values, reporting the average and maximum

optimality gap, as well as the average computation time. The average computation times increase

due to two factors: more capacity level decisions in the MIP (i.e., higher values of nS), and less

variable fixing (i.e., higher values of pF ix). For the given time limit of 2 hours, well performing

values can be found by balancing these two parameters. Setting nS to 3, 4 or even 10, and pF ix

between 80% and 90% results in a maximum optimality gap of around 3.36%, while other parameter

values may result in gaps of up to 8.83%. Clearly, if more computing time is available, one may

allow higher values for these parameters, which may further improve the solution quality.

Similar experiments were performed for different parameter values for the restricted MIP based

on the convexified bundle solutions. Not restricting the MIP at all resulted in significantly better

results than for the non-restricted MIP based on the Lagrangian solutions. Furthermore, it was

found that the restricted MIP based on the convexified bundle solution is less sensitive to changes

in the parameter value pF ix than the one based on the Lagrangian solutions. These results suggest
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that the decisions that are part of solutions selected by the bundle are those which are also present

in high quality solutions.

5.3. Comparisons with CPLEX

The performance of one of the Lagrangian based heuristics is now compared to CPLEX. We chose

the configuration that provided the lowest average and maximum optimality gaps: the bundle

method with restricted MIP based on its convexified solution, with nS = 4 and pF ix= 0.85. CPLEX

has been used with standard parameters. As in the previous experiments, a 1% optimality stopping

criterion and a time limit of 2 hours have been applied.

Computational Results. Tables 3, 4, 5 and 6 summarize the results for CPLEX, as well as for the

Lagrangian based heuristic outlined above for the four different problems DFLPG, DMCLFP CR,

DMCFLP ER and DMCFLP CR ER, respectively. All results are grouped by the number of capac-

ity levels q and the problem dimension defined by the number of candidate facility locations and

the number of customers. Each group given by such a combination includes 18 instances. The

tables report the average and maximum gaps of the best feasible integer solutions found by the

algorithm when compared to the best lower bound known for the corresponding problem instance,

as well as the average computing times. Note that the results shown in the Tables 3 – 6 only take

into account the instances where CPLEX found a feasible integer solution within the time limit of

2 hours. The number of instances for which CPLEX did not find any feasible solution is indicated

by column “#ns”. Furthermore, column “# prov. 1% gap” gives the number of instances (out of

those for which CPLEX found a feasible solution) where a 1% optimality gap has been proven by

the algorithm. For the Lagrangian heuristic, the number in brackets to the right represents the

same count, but for all 540 instances.

The observations made for the results of CPLEX and the Lagrangian based heuristics are similar

for all four problems. The number of instances where CPLEX did not find feasible solutions is

fairly high, at least 25% of the instances for each of the four problems. In most of the cases, this

happens due to memory limitations when the number of capacity levels or the number of candidate
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facility locations is high. Even though the average quality of solutions found by CPLEX is quite

good, the solver provides large optimality gaps on many instances. This is mostly the case when a

large number of capacity levels (q= 10) is available. As the solver constantly improves its bounds,

the optimality gaps proven by the algorithm (shown in brackets) are very close to the gaps when

compared to the best known lower bound for the instances. CPLEX is capable of proving a 1%

optimality gap for at least 342 out of the 540 instances for each of the four problems.

The Lagrangian based heuristic provides stable results for each of the four problems. When

compared to the same instances, it provides an average gap lower than that of CPLEX in com-

puting times that are, on average, significantly lower. For the DFLPG and the DMCFLP ER, the

Lagrangian heuristic is, on average, twelve times faster than CPLEX. For the DMCFLP CR and

the DMCFLP CR ER, the heuristic is, on average, five times faster. Most importantly, the maxi-

mum optimality gap is at most 3.78%. Due to the strength of the GMC formulation, the maximum

optimality gap proven by the Lagrangian heuristic is 4.87%. Furthermore, considering the same set

of instances, the heuristic proves a 1% gap for almost the same number of instances as CPLEX.

When considering all 540 instances (even those for which CPLEX does not find feasible solutions),

the Lagrangian heuristic proves a 1% gap for 395 or more of the 540 instances for each of the four

problems.

Interestingly, the difficulty of a problem is not always linked to its dimension. Instances where the

number of customers is close to the number of candidate facility locations are significantly harder

to solve than those where the number of customers is higher. In particular, this can be observed

for instances of dimension (50/50). An analysis showed that these instances tend to possess larger

integrality gaps, which may be linked to the fact that the more customers are available, the easier

it is to make efficient use of a facility (in terms of allocation costs and capacity usage) in an integer

solution.

A Note on the Model Size. As the previous results show, general-purpose MIP solvers such as

CPLEX may perform very well on small instances, i.e., when the number of capacity levels is low
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.26 0.99 531.7 18 0 0.44 1.32 6.7 7 [7]

50/200 0.02 0.12 15.1 18 0 0.43 0.92 7.6 18 [18]
100/100 0.11 0.51 54.1 18 0 0.43 0.95 13.0 17 [17]
100/400 0.04 0.37 63.9 18 0 0.58 0.95 39.7 18 [18]
150/150 0.13 0.76 82.4 18 0 0.38 0.87 33.3 18 [18]
150/600 0.06 0.64 179.7 18 0 0.66 0.96 104.6 18 [18]
200/200 0.17 0.86 116.3 18 0 0.51 0.98 49.2 18 [18]
200/800 0.09 0.52 370.1 12 6 0.67 0.90 184.1 12 [18]
250/250 0.04 0.37 179.7 18 0 0.44 0.92 88.8 18 [18]
250/1000 0.15 0.86 373.5 6 12 0.52 0.94 262.3 6 [18]
All 0.10 0.99 177.1 162 18 0.50 1.32 61.5 150 [168]

[0.18] [1.00] [0.67] [2.32]
5 50/50 0.71 2.11 3,122.8 13 0 0.88 2.06 28.4 3 [3]

50/200 0.17 0.79 90.7 18 0 0.48 0.89 17.5 16 [16]
100/100 0.46 1.30 1,268.3 16 0 0.64 1.26 36.8 9 [9]
100/400 0.04 0.16 145.8 18 0 0.55 0.87 58.3 18 [18]
150/150 0.39 1.13 1,106.5 15 1 0.61 1.24 98.5 12 [13]
150/600 0.08 0.67 255.0 12 6 0.63 0.96 116.2 12 [18]
200/200 0.22 0.84 762.6 16 2 0.52 0.92 89.3 15 [16]
200/800 0.06 0.20 552.0 6 12 0.53 0.89 243.8 6 [18]
250/250 0.15 0.52 885.7 17 1 0.46 0.95 151.2 17 [17]
250/1000 0.13 0.75 683.3 6 12 0.49 0.94 348.5 6 [18]
All 0.27 2.11 957.8 137 34 0.59 2.06 90.2 114 [146]

[0.39] [2.11] [0.86] [4.59]
10 50/50 23.11 92.72 6,472.0 2 0 1.90 2.88 282.7 0 [0]

50/200 0.86 2.19 2,823.1 12 3 0.73 1.28 108.0 8 [9]
100/100 3.03 14.82 5,312.7 4 7 1.26 2.44 131.1 2 [2]
100/400 0.30 1.44 991.3 10 7 0.55 0.91 123.4 11 [18]
150/150 2.59 11.93 5,014.6 3 11 0.85 1.31 105.0 2 [2]
150/600 0.07 0.17 541.2 6 12 0.43 0.67 125.2 6 [17]
200/200 0.88 1.66 3,400.7 4 12 0.80 1.62 193.3 3 [4]
200/800 0.12 0.12 1,743.0 1 17 0.15 0.15 681.0 1 [18]
250/250 0.20 0.36 1,052.7 3 15 0.27 0.40 171.3 3 [5]
250/1000 - - - 0 18 - - - - [18]
All 6.28 92.72 3,741.6 45 102 1.02 2.88 171.1 36 [93]

[6.36] [92.72] [1.18] [3.63]
All All 1.42 92.72 1,192.7 344 154 0.64 2.88 94.5 300 [407]

[1.51] [92.72] [0.90] [4.59]
Table 3 Comparison of CPLEX and Lagrangian based heuristics for the DFLPG: average and maximum

optimality gap when compared to the best known lower bound.

(q ∈ {3,5}) and the number of candidate facility locations is small (|J | ≤ 100). Clearly, adding the

SIs (8) a priori to the model significantly increases the number of constraints and, therefore, the

memory requirements of the model. As noted by Jena et al. (2013), the addition of the SIs to the
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.29 1.14 650.6 17 0 0.51 1.54 13.9 7 [7]

50/200 0.08 0.67 18.5 18 0 0.61 0.99 15.6 18 [18]
100/100 0.11 0.55 41.2 18 0 0.44 0.84 27.3 17 [17]
100/400 0.08 0.66 90.6 18 0 0.62 0.94 86.8 18 [18]
150/150 0.04 0.23 102.4 18 0 0.52 0.99 62.4 18 [18]
150/600 0.10 0.85 275.5 18 0 0.72 0.98 243.4 18 [18]
200/200 0.13 0.92 198.0 18 0 0.56 0.95 137.8 16 [16]
200/800 0.19 0.93 589.3 12 6 0.57 0.95 530.9 12 [18]
250/250 0.06 0.34 496.3 18 0 0.56 0.95 219.1 18 [18]
250/1000 0.15 0.73 791.0 6 12 0.67 0.96 596.7 6 [18]
All 0.12 1.14 281.1 161 18 0.57 1.54 151.0 148 [166]

[0.19] [1.27] [0.74] [2.75]
5 50/50 0.67 2.44 1,973.7 14 0 0.91 2.24 32.2 3 [3]

50/200 0.26 0.69 86.4 18 0 0.54 1.04 46.9 16 [16]
100/100 0.37 0.93 1,144.2 17 0 0.45 1.05 91.8 13 [13]
100/400 0.11 0.89 203.6 18 0 0.61 0.97 136.9 18 [18]
150/150 0.39 1.00 1,104.5 17 0 0.54 1.19 191.7 15 [15]
150/600 0.09 0.85 413.8 12 6 0.69 0.95 280.6 12 [18]
200/200 0.23 0.88 992.8 18 0 0.52 0.96 322.6 18 [18]
200/800 0.16 0.60 868.0 6 12 0.36 0.94 597.0 6 [18]
250/250 0.48 3.88 1,473.8 16 1 0.54 1.12 457.3 16 [17]
250/1000 0.16 0.81 1,214.5 6 12 0.64 0.98 734.3 6 [18]
All 0.32 3.88 950.4 142 31 0.59 2.24 227.7 123 [154]

[0.47] [3.95] [0.89] [3.70]
10 50/50 4.27 19.79 5,779.7 4.00 1 2.32 3.78 977.8 0 [0]

50/200 0.74 1.51 3,308.0 9 5 0.82 1.53 202.8 4 [4]
100/100 7.84 66.50 5,449.2 4 5 1.67 3.19 376.4 0 [0]
100/400 0.92 8.29 1,151.1 11 6 0.66 0.99 370.7 11 [15]
150/150 17.03 88.13 5,172.8 4 7 1.26 2.40 331.3 1 [1]
150/600 0.26 0.89 1,010.3 6 12 0.55 0.88 440.5 6 [15]
200/200 23.45 89.67 4,217.1 4 10 1.09 1.73 506.6 3 [3]
200/800 0.22 0.63 3,467.8 6 12 0.44 0.95 1,395.0 6 [17]
250/250 1.02 2.91 3,064.0 3 14 0.52 0.80 664.8 4 [6]
250/1000 - - - 0 18 - - - - [16]
All 6.41 89.67 3,951.9 51 90 1.23 3.78 555.2 35 [77]

[7.08] [100.00] [1.53] [4.50]
All All 1.61 89.67 1,353.7 354 139 0.72 3.78 270.2 306 [397]

[1.84] [100.00] [1.05] [4.50]
Table 4 Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP CR: average and maximum

optimality gap when compared to the best known lower bound.

GMC based models significantly facilitates the solution of the problems. In fact, for the instances

used in this work, without the use of the SIs, CPLEX provides very low solution quality even for

small instances. Other studies, such as the one by Gendron and Larose (2014) applied to a network
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.25 0.94 779.8 17 0 0.25 0.86 6.7 11 [11]

50/200 0.01 0.10 20.5 18 0 0.59 0.97 6.9 18 [18]
100/100 0.17 0.67 40.7 18 0 0.37 0.94 13.8 17 [17]
100/400 0.04 0.37 89.0 18 0 0.65 0.99 40.7 18 [18]
150/150 0.20 0.74 120.3 18 0 0.46 0.96 26.4 18 [18]
150/600 0.01 0.17 263.9 18 0 0.67 0.95 105.0 18 [18]
200/200 0.06 0.43 189.7 18 0 0.31 0.86 46.3 18 [18]
200/800 0.11 0.76 466.3 12 6 0.75 0.96 190.3 12 [18]
250/250 0.04 0.40 393.0 18 0 0.50 0.91 97.1 18 [18]
250/1000 0.31 0.91 538.8 6 12 0.50 0.91 247.3 6 [18]
All 0.11 0.94 265.3 161 18 0.50 0.99 61.4 154 [172]

[0.20] [1.39] [0.68] [2.11]
5 50/50 0.56 1.60 2,521.3 15 0 0.85 1.79 34.7 3 [3]

50/200 0.19 0.65 100.7 18 0 0.48 0.86 18.3 15 [15]
100/100 0.44 1.83 1,376.8 15 0 0.58 1.35 35.1 10 [10]
100/400 0.10 0.45 240.1 18 0 0.57 0.83 58.2 18 [18]
150/150 0.43 1.44 1,286.9 16 0 0.50 1.21 91.9 13 [13]
150/600 0.01 0.11 393.4 12 6 0.67 0.97 118.4 12 [18]
200/200 0.38 2.58 1,061.8 16 1 0.53 0.98 113.6 16 [16]
200/800 0.05 0.11 796.5 6 12 0.51 0.94 239.0 6 [18]
250/250 0.17 0.63 1,211.4 16 2 0.51 0.91 174.9 16 [17]
250/1000 0.32 0.82 1,076.8 6 12 0.54 0.94 328.2 6 [18]
All 0.29 2.58 1,039.8 138 33 0.58 1.79 94.2 115 [146]

[0.43] [2.60] [0.87] [3.84]
10 50/50 6.31 87.99 5,595.0 6.00 0 1.44 2.57 149.9 1 [1]

50/200 0.83 5.76 2,029.6 15 1 0.64 1.19 125.5 9 [10]
100/100 8.18 91.36 4,867.1 6 3 1.22 2.43 157.3 2 [2]
100/400 0.23 0.63 1,012.0 11 7 0.51 0.86 125.1 11 [17]
150/150 11.78 95.92 5,188.2 4 9 1.06 1.92 570.4 2 [2]
150/600 0.09 0.31 1,139.2 6 12 0.44 0.67 154.3 6 [16]
200/200 0.61 1.91 2,713.2 4 13 0.80 1.48 166.0 2 [3]
200/800 3.20 6.33 3,544.0 1 16 0.02 0.04 507.0 2 [18]
250/250 0.10 0.19 1,570.0 3 15 0.40 0.84 165.3 3 [6]
250/1000 - - - 0 18 - - - - [18]
All 4.30 95.92 3,468.0 56 94 0.91 2.57 197.3 38 [93]

[4.62] [100.00] [1.18] [3.83]
All All 1.09 95.92 1,250.8 355 145 0.62 2.57 103.2 307 [411]

[1.25] [100.00] [0.91] [3.84]
Table 5 Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP ER: average and maximum

optimality gap when compared to the best known lower bound.

design problem, confirm that it may be beneficial to add these inequalities in a branch-and-cut

scheme. However, this only yields good performance if only a small number of SIs are violated and

therefore added to the model. In the case of the DFLPG, a significant number of SIs are violated
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.23 1.20 738.9 17 0 0.48 1.40 13.9 7 [7]

50/200 0.05 0.44 20.6 18 0 0.46 0.94 16.0 18 [18]
100/100 0.15 0.73 70.4 18 0 0.38 0.93 32.5 17 [17]
100/400 0.13 0.87 99.0 18 0 0.53 0.90 84.5 18 [18]
150/150 0.09 0.39 127.3 18 0 0.49 0.94 58.3 18 [18]
150/600 0.03 0.28 302.9 18 0 0.74 0.97 217.0 18 [18]
200/200 0.13 0.79 248.5 18 0 0.52 0.96 126.4 18 [18]
200/800 0.15 0.93 666.7 12 6 0.64 0.98 422.9 12 [18]
250/250 0.11 0.83 453.1 18 0 0.41 0.87 201.0 18 [18]
250/1000 0.04 0.12 812.3 6 12 0.69 0.95 428.2 6 [18]
All 0.12 1.20 308.4 161 18 0.52 1.40 130.5 150 [168]

[0.19] [1.23] [0.68] [2.39]
5 50/50 0.71 2.96 2,951.6 13 0 0.91 2.42 48.4 3 [3]

50/200 0.23 0.81 187.3 18 0 0.45 0.82 41.4 14 [14]
100/100 0.47 1.85 1,286.9 16 0 0.54 1.42 88.8 10 [10]
100/400 0.12 0.63 273.7 18 0 0.55 0.95 129.6 18 [18]
150/150 0.41 1.13 1,242.1 16 1 0.52 0.87 164.8 15 [15]
150/600 0.10 0.89 475.3 12 6 0.67 0.96 242.3 12 [18]
200/200 0.26 0.84 1,193.9 18 0 0.40 0.86 319.4 17 [17]
200/800 0.17 0.89 1,202.3 6 12 0.68 0.97 599.5 6 [18]
250/250 0.47 4.61 1,230.1 15 2 0.52 0.98 358.8 16 [17]
250/1000 0.03 0.15 1,347.3 6 12 0.66 0.86 640.3 6 [18]
All 0.33 4.61 1,142.0 138 33 0.57 2.42 205.3 117 [148]

[0.47] [4.61] [0.87] [4.00]
10 50/50 8.06 87.78 6,168.2 3.00 0 2.14 3.44 1,632.8 0 [0]

50/200 0.63 1.55 2,561.8 11 5 0.70 1.23 172.5 6 [7]
100/100 15.65 94.16 5,781.8 3 4 1.72 2.59 776.1 0 [0]
100/400 0.28 0.68 705.1 10 8 0.66 0.96 194.3 10 [14]
150/150 0.98 1.82 4,655.6 4 11 1.02 1.66 289.4 1 [1]
150/600 0.04 0.19 1,394.0 6 12 0.53 0.99 492.5 6 [15]
200/200 19.75 96.06 4,567.4 3 13 0.97 1.69 384.0 2 [2]
200/800 - - - 0 18 - - - - [17]
250/250 0.23 0.50 3,733.7 3 15 0.40 0.57 453.3 3 [6]
250/1000 - - - 0 18 - - - - [17]
All 6.34 96.06 4,043.6 43 104 1.24 3.44 693.4 28 [79]

[6.74] [100.00] [1.44] [4.87]
All All 1.43 96.06 1,364.1 342 155 0.68 3.44 270.2 295 [395]

[1.59] [100.00] [1.00] [4.87]
Table 6 Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP CR ER: average and

maximum optimality gap when compared to the best known lower bound.

in its LP relaxation. Adding the inequalities as CPLEX user cuts to reduce the size of the model

showed less competitive results. For more than 40% of the instances, the solver could not find
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feasible solutions. When feasible solutions were found, the average optimality gap was consistently

high, on average, more than 10%.

We also note that, even though we use information from the Lagrangian solutions, other mech-

anism could be used to rate the importance of opening decisions to generate a MIP that is signifi-

cantly restricted in its size. Theoretically, using the LP relaxation solution would be one alternative.

However, as the LP relaxation cannot be efficiently solved (or not at all) for large instances, such

a solution strategy would be applicable only to small and medium sized instances, or in computing

environments with significantly larger memory and time resources.

We finally would like to remark that, even though the computational results are reported using

CPLEX v12.6, all experiments had previously been performed with v12.4. We observed a significant

improvement of the computing times: solving the models with CPLEX was, on average, about 20%

to 50% faster for each of the four problem variants. The improvement for the Lagrangian heuristics

has been found to be, on average, between 35% and 80%. This may be due to the fact that the

solver improved particularly for small problems, as it is the case for the restricted MIP used in the

Lagrangian heuristics.

6. Conclusions and Future Research

In this work, we have extended the Dynamic Facility Location Problem with Generalized Modular

Capacities by considering demands for multiple commodities. We addressed the solution of large-

scale instances and proposed a heuristic based on two optimization phases. First, the Lagrangian

dual is solved, involving the iterated solution of the Lagrangian subproblem. In this phase, feasible

solutions of reasonable quality are found in very short computing times. Then, a restricted MIP

is generated taking into consideration only decisions that have been found important during the

solution of the Lagrangian dual. Using this approach, the final solution quality is consistently

within 3.78% from the best known lower bound, even for instances for which CPLEX does not find

feasible solutions due to the large memory and solution time required by the model.

The general cost structure of this problem allows for representing several existing facility location

problems. In addition to the DFLPG, in which the capacity change costs are based on a cost matrix,
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this has been exemplified on three special cases. Given the strength of the GMC formulation, the

Lagrangian heuristic was able to prove optimality within 1% for most of the small and medium sized

instances. The proposed model and solution method may be applied to other problems, especially

to those where the model size passes the limits of state-of-the-art MIP solvers. It may also be

applied to larger instances than those addressed in this work, as the method consumes very little

memory.

The Lagrangian dual has been solved by the classical subgradient method and a bundle imple-

mentation. Although the bundle method requires more time to compute the Lagrangian multipliers,

it consistently outperformed the subgradient approach due to its strong convergence properties.

On average, it required half of the time and resulted in a higher solution quality.

While local improvement heuristics such as tabu search have been common as a second phase

optimization, the use of a restricted MIP is an interesting alternative, as general-purpose MIP

solvers constantly improve. The implementation of a restricted MIP is very simple. Furthermore,

one can handle any kind of problem structure that can be defined as a MIP. Even though one

does not have to worry about finding the right trade-off between size and inspection time of a

neighborhood, the question of how to significantly restrict the size of the original MIP is crucial.

The bundle method with restricted MIP resulted in very competitive results, especially since the

use of the convexified solutions already limits the decisions to those stored in the bundle. For the

subgradient method, a well performing filtering approach based on the Lagrangian solutions may

be designed, for example, by better tuning the maximum number of subgradient iterations and the

parameter values for the restricted MIP.
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Appendix

A. Test Instances

Instances for multi-period facility location problems essentially contain information about the customer

demand for each time period, construction costs of the facilities and the costs to allocate demand between

customers and facilities. The DFLPG and the three special cases additionally involve a detailed cost structure

for the capacity changes. Due to the lack of openly available instance sets that include these properties, we

generated a total of 540 instances, 180 for each capacity level, to test the presented models. These essentially

extend the instances used by Jena et al. (2013) by adding multiple commodities, the use of a cost matrix

for capacity changes and a larger set of candidate facility locations. In the following we present how these

instance properties are generated and which parameters are used.

A.1. Problem dimension

Instances were generated with different numbers of candidate facility locations |J | and customers |I|, com-

bining all pairs of J ∈ {50,100,150,200,250} and I ∈ {|J |,4 · |J |}. To be precise, the instance dimensions are:

(10/20), (50/50), (50/200), (100/100), (100/400), (150/150), (150/600), (200/200), (200/800), (250/250)

and (250/1000).

A.2. Number of capacity levels

The number of capacity levels q also impacts on the size of the models. Instances are generated with a

maximum of 3, 5 and 10 capacity levels, which are assumed to be reasonable values for a broad variety of

different application contexts.

The capacities uj` are generated based on the total number of customers and are chosen such that a

considerably large number of facilities (about half of the candidate locations) is selected. The larger the set

of customers, the higher is the capacity of each level. To be precise, we set uj1 = 300 if the instance covers

50 customers, uj1 = 600 if the instance covers 100 customers, uj1 = 800 if the instance covers 150 customers,

uj1 = 1000 if the instance covers 200 customers, uj1 = 1200 if the instance covers 250 customers, uj1 = 2000 if

the instance covers 400 customers, uj1 = 2500 if the instance covers 600 customers, uj1 = 3000 if the instance

covers 800 customers and uj1 = 5000 if the instance covers 1000 customers. The capacities of higher capacity

levels ` ≥ 2 are set as multiples of the first capacity level, i.e., uj` = ` · uj1. Note that we assume that the

problem instances do not contain initially existing facilities, i.e., the initial capacity level of each facility is

0.



Jena, Cordeau, and Gendron: Lagrangian Heuristics for Large-Scale Dynamic Facility Location
38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

A.2.1. Number of time periods

All generated instances contain ten time periods, which is found to be sufficient to demonstrate capacity

changes along time and small enough to not increase the size of the models too much.

A.3. Customer/facility locations

For each of the different problem sizes, |I| customer demand points have been randomly generated following

a continuous uniform distribution, rounding the x and y coordinates to the next lowest integer value. The

first |J | points of |I| customer locations have additionally been defined as candidate facility locations and

therefore coincide with the customer demand points. The networks were generated on squares of the following

three sizes: 300km, 380km and 450km.

A.4. Demand allocation costs

Costs are divided into fixed and variable costs. Fixed costs are given by the construction of facilities and

the change of their capacity levels. Variable costs are composed of the costs to produce and transport the

commodities.

Transportation costs have been computed based on the Euclidean distance between the points, includ-

ing a small modification that results in a slight clustering effect of the customers close to a facility. The

transportation costs are composed of two components:

1. A cost that depends on the total distance, referred to as the vehicle cost. The vehicle cost is linear in

function of the Euclidean distance between the two points on the network (5$/km).

2. A cost that depends on the travel time, referred to as the driver’s payment. The driver’s payment is

0 if the two points are within one-hour of transportation distance (assuming an average vehicle speed of

62km/h) and linear in function of the Euclidean distance if the two points are at more than one hour of

driving distance (50$/h).

Let distij denote the distance between facility location j and customer i. The costs to transport one unit

of demand from facility j to customer i is therefore set to:

gtij = 5 · distij + 50 ·max

(
0,
distij

62
− 1

)
The variable and fixed costs include economies of scale in function of the size of the facility. These costs

are therefore described by concave cost functions, as explained in the following. The production costs for

each unit served from a facility to a customer is defined as the cost to operate a facility and depends on



Jena, Cordeau, and Gendron: Lagrangian Heuristics for Large-Scale Dynamic Facility Location
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 39

the size of the facility. The cost to produce one commodity unit at capacity level 1 is set to 20.90$. At each

higher capacity level, the production cost is 3% cheaper than at the previous level:

gpj0 = 20.90

gpj` = 0.97 · gp
j(`−1)

Note that the production costs are added to the transportation costs to determine the total demand

allocation costs gij`t to serve the customer demands:

gij`t = gtij + gpj`

In addition to the demand allocation costs as discussed above, a second set of instances was generated

with five times higher transportation costs.

A.5. Fixed costs

The construction cost, also referred to as capacity expansion cost, is set to 100,000$ for a facility of level 1.

Each additional capacity level is 10% cheaper than the previous one. The construction costs for facilities of

different capacity levels are therefore computed according to the following formula:

fo
j0 = 100,000

fo
j1 = 190,000

fo
j` = fo

j(`−1) + 0.9 · (fo
j(`−1)− fo

j(`−2))

The maintenance costs for a facility of a certain size are computed in a similar fashion. They are set

relatively high to motivate capacity changes. The maintenance costs for a facility of capacity level 1 are set

to 51,000$. The maintenance costs for each additional capacity level are 15% cheaper than the previous ones:

F o
j0 = 51,000

F o
j1 = 94,350

F o
j` = F o

j(`−1) + 0.85 · (F o
j(`−1)−F o

j(`−2))

Fixed Costs for the Special Cases

For the three special cases, i.e., the DMCFLP CR, DMCFLP ER and the DMCFLP CR ER, the cost to
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reduce the capacity of a facility by ` capacity levels is set to 10% of the costs to expand the capacity of a

facility by ` capacity levels.

Finally, the costs for reopening and closing existing facilities were taken from the input data of the

previously mentioned industrial application introduced by Jena et al. (2012). Although being strictly

increasing, these costs do not necessarily represent economies of scale. The costs to reopen a closed facility

of capacity level 1, . . . ,10 are 3,138.34, 4,084.69, 4,924.58, 5,693.26, 7,085.07, 7,727.50, 8,342.34, 8,933.68,

10,057.70 and 10,594.80, respectively. The costs to close an open facility of capacity level 1, . . . ,10 are

8,624.93, 11,595.80, 14,305.60, 16,836.50, 21,524.10, 23,727.90, 25,858.30, 27,925.70, 31,901.10 and 33,820.70,

respectively.

Fixed Costs for the DFLPG

For the DFLPG, the construction costs are as indicated above, i.e., the costs to construct a facility of size `

and its maintenance costs at time period t are set to: fj0`t = fo
j` +F o

j`.

The costs to change capacity levels for this problem are based on a cost matrix, and, therefore, differ from

the costs for capacity expansion and reduction shown above for the special cases. The cost to completely

remove a facility are set to 25% of the construction costs of a facility of the same size: fj`0t = fo
j`/4.

Finally, the cost to change the capacity level from `1 ≥ 1 to `2 ≥ 1 are set to the difference of their

construction costs, scaled by 50%:

fj`1`2t =


1.5 · (fo

j`2
− fo

j`1
) , if `1 < `2

1.5 · (fo
j`1
− fo

j`2
) , if `1 > `2.

A.6. Demand distribution

We consider two different demand scenarios. In both scenarios, the demand for each of the customers is

randomly generated and randomly distributed over time. The two scenarios differ in their total demand

summed over all customers in each time period. In the first scenario (regular), the total demand is similar in

each time period. We set the average demand for a customer to 12 units per time period. The total demand

for all customers is therefore approximately 10 · |I| units at each time period. The second scenario (irregular)

assumes that the total demand follows strong variations along time and therefore varies at each time period.

In this scenario, the total demand for all customers is multiplied by a random distortion factor at each time

period. This random distortion factor is set to the absolute value of a normal random variable with mean
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value 1.0 and standard deviation 0.6 (note that this procedure produced distortion factors from 0.14 to 2.24).

Let totDemt be the total customer demand for time period t, computed as explained above for one of the

two scenarios.

We now explain how the individual demands for each of the customers are generated and distributed on

the different time periods such that its total sum equals approximately the value of totDemt at each of the

time periods. For all customers and all time periods, the total demand covers approximately 12 · |I| · |T | units.

In a first step, this total demand is randomly distributed on each of the customers. In a second step, each

customer demand is distributed on different time periods:

1. Let totRemDem denote the total demand for all customers and time periods that has not yet been

allocated to any customer. Furthermore, let numRemCust indicate the number of customers that have

not yet been allocated any demand. For each customer, its total demand for all time periods, denoted to

totJDemj , is computed as a random normal variable with a mean µ= totRemDemand/numRemCust and

standard deviation σ = µ/2. Note that, throughout our instance generation, this method did not produce

any negative value.

2. The total demand for each customer, totJDemj is then divided into four equal parts. One part of the

demand is allocated to a time period that is randomly selected following a uniform distribution. Each of the

other three parts is allocated to the time period t that has the highest gap between the total demand yet

allocated to period t and its value totDemt.

The demands for the second to fifth commodity are computed based on the demand of the first commodity.

To be precise, the demand dipt for p≥ 2 is computed as dipt = di1t ·rand(1.0,0.2) ·avgDemp/avgDem1, where

avgDem1 = 10, avgDem2 = 6, avgDem3 = 9, avgDem4 = 5, avgDem5 = 8 and rand(1.0,0.2) is a random

variable with normal distribution, a mean of 1.0 and a standard deviation of 0.2.

Note that the choice of allocating demand to only a few of the time periods is motivated by the afore-

mentioned industrial application in the forest industry, where each logging region is harvested, on average,

about four seasons over the ten-period planning horizon. Furthermore, it results in a geographically more

dispersed distribution of the demand which creates the need to adjust capacities at the facilities.


